The efficiency of bias-corrected estimators for nonparametric kernel estimation based on local estimating equations
نویسنده
چکیده
Stuetzle and Mittal for ordinary nonparametric kernel regression and Kauermann and Tutz for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators without the need for devices such as second derivative estimation and multiple bandwidths of di erent order We derive a similar estimator in the context of local multivariate estimation based on estimating functions As expected this lower order bias is bought at a cost of increased variance Surprisingly when compared to ordinary kernel and local linear kernel estimators the bias corrected estimators increase variance by a factor independent of the problem depending only on the kernel used The variance increase is approximately and more for kernels in standard use However the variance increase is still less than that incurred when undersmoothing a local quadratic regression estimator
منابع مشابه
The Efficiency of Bias { Correctedestimators for Nonparametric
Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual estimators, without the need for devices such as second derivative estimation and multiple bandwidths of diierent order. We derive a similar estimator in the context of local...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملnprobust: Nonparametric Kernel-Based Estimation and Robust Bias-Corrected Inference∗
Nonparametric kernel density and local polynomial regression estimators are very popular in Statistics, Economics, and many other disciplines. They are routinely employed in applied work, either as part of the main empirical analysis or as a preliminary ingredient entering some other estimation or inference procedure. This article describes the main methodological and numerical features of the ...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملThe Relative Improvement of Bias Reduction in Density Estimator Using Geometric Extrapolated Kernel
One of a nonparametric procedures used to estimate densities is kernel method. In this paper, in order to reduce bias of kernel density estimation, methods such as usual kernel(UK), geometric extrapolation usual kernel(GEUK), a bias reduction kernel(BRK) and a geometric extrapolation bias reduction kernel(GEBRK) are introduced. Theoretical properties, including the selection of smoothness para...
متن کامل